Exaggerated blood pressure variability superimposed on hypertension aggravates cardiac remodeling in rats via angiotensin II system-mediated chronic inflammation.

نویسندگان

  • Hiroshi Kudo
  • Hisashi Kai
  • Hidemi Kajimoto
  • Mitsuhisa Koga
  • Narimasa Takayama
  • Takahiro Mori
  • Ayami Ikeda
  • Suguru Yasuoka
  • Takahiro Anegawa
  • Hiroharu Mifune
  • Seiya Kato
  • Yoshitaka Hirooka
  • Tsutomu Imaizumi
چکیده

Hypertensive patients with large blood pressure variability (BPV) have aggravated end-organ damage. However, the pathogenesis remains unknown. We investigated whether exaggerated BPV aggravates hypertensive cardiac remodeling and function by activating inflammation and angiotensin II-mediated mechanisms. A model of exaggerated BPV superimposed on chronic hypertension was created by performing bilateral sinoaortic denervation (SAD) in spontaneously hypertensive rats (SHRs). SAD increased BPV to a similar extent in Wistar Kyoto rats and SHRs without significant changes in mean blood pressure. SAD aggravated left ventricular and myocyte hypertrophy and myocardial fibrosis to a greater extent and impaired left ventricular systolic function in SHRs. SAD induced monocyte chemoattractant protein-1, transforming growth factor-beta, and angiotensinogen mRNA upregulations and macrophage infiltration of the heart in SHRs. The effects of SAD on cardiac remodeling and inflammation were much smaller in Wistar Kyoto rats compared with SHRs. Circulating levels of norepinephrine, the active form of renin, and inflammatory cytokines were not affected by SAD in Wistar Kyoto rats and SHRs. A subdepressor dose of candesartan abolished the SAD-induced left ventricular/myocyte hypertrophy, myocardial fibrosis, macrophage infiltration, and inductions of monocyte chemoattractant protein-1, transforming growth factor-beta, and angiotensinogen and subsequently prevented systolic dysfunction in SHRs with SAD. These findings suggest that exaggerated BPV induces chronic myocardial inflammation and thereby aggravates cardiac remodeling and systolic function in hypertensive hearts. The cardiac angiotensin II system may play a role in the pathogenesis of cardiac remodeling and dysfunction induced by a combination of hypertension and exaggerated BPV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Mechanism of Aggravation of Hypertensive Organ Damages by Short-Term Blood Pressure Variability

There is increasing evidence that not only the elevation of systolic and diastolic blood pressure (BP) but also the increase in BP variability (or fluctuation) are associated with hypertensive organ damages and the morbidity and mortality of cerebrovascular and cardiovascular events. However, the molecular mechanism whereby the increase in BP variability aggravates hypertensive organ damages re...

متن کامل

Crocin prevents acute angiotensin II-induced hypertension in anesthetized rats

Objective: Angiotensin II (Ang II), the main product of renin-angiotensin system (RAS) has a well-known role in cardiovascular regulation. Over-production of Ang II is one of the important underlying mechanisms of hypertension. In this study, the effect of crocin on cardiovascular responses in rats with acute hypertension induced by Ang II was evaluated. Materials and methods: Rats were divided...

متن کامل

Local angiotensin II aggravates cardiac remodeling in hypertension.

Angiotensin II (ANG II) contributes to hypertension, cardiac hypertrophy, fibrosis, and dysfunction; however, it is difficult to separate the cardiac effect of ANG II from its hemodynamic action in vivo. To overcome the limitations, we used transgenic mice with cardiac-specific expression of a transgene fusion protein that releases ANG II from cardiomyocytes (Tg-ANG II) and treated them with de...

متن کامل

Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7).

Cardiac remodeling, which typically results from chronic hypertension or following an acute myocardial infarction, is a major risk factor for the development of heart failure and, ultimately, death. The renin-angiotensin system (RAS) has previously been established to play an important role in the progression of cardiac remodeling, and inhibition of a hyperactive RAS provides protection from ca...

متن کامل

The effect of progressive aerobic continuous training on angiotensin-1, angiotensin-2 and angiotensin-converting enzyme type 2 in patients with heart failure

Background: Chronic hypertension causes structural and functional changes in the heart, ultimately leading to heart failure (HF), which further increases mortality and morbidit. HF is a complex clinical syndrome caused by various structural or functional abnormalities of the heart that impair the filling capacity of the ventricles. The findings of various trials have shown the association betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 54 4  شماره 

صفحات  -

تاریخ انتشار 2009